3.135 \(\int \frac{(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=159 \[ \frac{4 a^2 (A+2 B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{4 a^2 (4 A+5 B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a^2 (7 A+5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{4 a^2 (4 A+5 B) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{5 d \cos ^{\frac{5}{2}}(c+d x)} \]

[Out]

(-4*a^2*(4*A + 5*B)*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^2*(A + 2*B)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*
a^2*(7*A + 5*B)*Sin[c + d*x])/(15*d*Cos[c + d*x]^(3/2)) + (4*a^2*(4*A + 5*B)*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d
*x]]) + (2*A*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.305887, antiderivative size = 159, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.212, Rules used = {2975, 2968, 3021, 2748, 2636, 2639, 2641} \[ \frac{4 a^2 (A+2 B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{4 a^2 (4 A+5 B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a^2 (7 A+5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{4 a^2 (4 A+5 B) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{5 d \cos ^{\frac{5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(7/2),x]

[Out]

(-4*a^2*(4*A + 5*B)*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^2*(A + 2*B)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*
a^2*(7*A + 5*B)*Sin[c + d*x])/(15*d*Cos[c + d*x]^(3/2)) + (4*a^2*(4*A + 5*B)*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d
*x]]) + (2*A*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2))

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac{7}{2}}(c+d x)} \, dx &=\frac{2 A \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2}{5} \int \frac{(a+a \cos (c+d x)) \left (\frac{1}{2} a (7 A+5 B)+\frac{1}{2} a (A+5 B) \cos (c+d x)\right )}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 A \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2}{5} \int \frac{\frac{1}{2} a^2 (7 A+5 B)+\left (\frac{1}{2} a^2 (A+5 B)+\frac{1}{2} a^2 (7 A+5 B)\right ) \cos (c+d x)+\frac{1}{2} a^2 (A+5 B) \cos ^2(c+d x)}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 (7 A+5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 A \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{4}{15} \int \frac{\frac{3}{2} a^2 (4 A+5 B)+\frac{5}{2} a^2 (A+2 B) \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 (7 A+5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 A \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{1}{3} \left (2 a^2 (A+2 B)\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx+\frac{1}{5} \left (2 a^2 (4 A+5 B)\right ) \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{4 a^2 (A+2 B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 (7 A+5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{4 a^2 (4 A+5 B) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 A \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}-\frac{1}{5} \left (2 a^2 (4 A+5 B)\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{4 a^2 (4 A+5 B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{4 a^2 (A+2 B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 (7 A+5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{4 a^2 (4 A+5 B) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 A \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}\\ \end{align*}

Mathematica [C]  time = 6.46279, size = 883, normalized size = 5.55 \[ \sqrt{\cos (c+d x)} (\cos (c+d x) a+a)^2 \left (\frac{A \sec (c) \sin (d x) \sec ^3(c+d x)}{10 d}+\frac{\sec (c) (3 A \sin (c)+10 A \sin (d x)+5 B \sin (d x)) \sec ^2(c+d x)}{30 d}+\frac{\sec (c) (10 A \sin (c)+5 B \sin (c)+24 A \sin (d x)+30 B \sin (d x)) \sec (c+d x)}{30 d}+\frac{(4 A+5 B) \csc (c) \sec (c)}{5 d}\right ) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right )+\frac{2 A (\cos (c+d x) a+a)^2 \csc (c) \left (\frac{\, _2F_1\left (-\frac{1}{2},-\frac{1}{4};\frac{3}{4};\cos ^2\left (d x+\tan ^{-1}(\tan (c))\right )\right ) \sin \left (d x+\tan ^{-1}(\tan (c))\right ) \tan (c)}{\sqrt{1-\cos \left (d x+\tan ^{-1}(\tan (c))\right )} \sqrt{\cos \left (d x+\tan ^{-1}(\tan (c))\right )+1} \sqrt{\cos (c) \cos \left (d x+\tan ^{-1}(\tan (c))\right ) \sqrt{\tan ^2(c)+1}} \sqrt{\tan ^2(c)+1}}-\frac{\frac{2 \cos \left (d x+\tan ^{-1}(\tan (c))\right ) \sqrt{\tan ^2(c)+1} \cos ^2(c)}{\cos ^2(c)+\sin ^2(c)}+\frac{\sin \left (d x+\tan ^{-1}(\tan (c))\right ) \tan (c)}{\sqrt{\tan ^2(c)+1}}}{\sqrt{\cos (c) \cos \left (d x+\tan ^{-1}(\tan (c))\right ) \sqrt{\tan ^2(c)+1}}}\right ) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right )}{5 d}+\frac{B (\cos (c+d x) a+a)^2 \csc (c) \left (\frac{\, _2F_1\left (-\frac{1}{2},-\frac{1}{4};\frac{3}{4};\cos ^2\left (d x+\tan ^{-1}(\tan (c))\right )\right ) \sin \left (d x+\tan ^{-1}(\tan (c))\right ) \tan (c)}{\sqrt{1-\cos \left (d x+\tan ^{-1}(\tan (c))\right )} \sqrt{\cos \left (d x+\tan ^{-1}(\tan (c))\right )+1} \sqrt{\cos (c) \cos \left (d x+\tan ^{-1}(\tan (c))\right ) \sqrt{\tan ^2(c)+1}} \sqrt{\tan ^2(c)+1}}-\frac{\frac{2 \cos \left (d x+\tan ^{-1}(\tan (c))\right ) \sqrt{\tan ^2(c)+1} \cos ^2(c)}{\cos ^2(c)+\sin ^2(c)}+\frac{\sin \left (d x+\tan ^{-1}(\tan (c))\right ) \tan (c)}{\sqrt{\tan ^2(c)+1}}}{\sqrt{\cos (c) \cos \left (d x+\tan ^{-1}(\tan (c))\right ) \sqrt{\tan ^2(c)+1}}}\right ) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right )}{2 d}-\frac{A (\cos (c+d x) a+a)^2 \csc (c) \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right ) \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \sqrt{1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{-\sqrt{\cot ^2(c)+1} \sin (c) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right )}{3 d \sqrt{\cot ^2(c)+1}}-\frac{2 B (\cos (c+d x) a+a)^2 \csc (c) \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right ) \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \sqrt{1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{-\sqrt{\cot ^2(c)+1} \sin (c) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right )}{3 d \sqrt{\cot ^2(c)+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(7/2),x]

[Out]

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*Sec[c/2 + (d*x)/2]^4*(((4*A + 5*B)*Csc[c]*Sec[c])/(5*d) + (A*Sec[c]*
Sec[c + d*x]^3*Sin[d*x])/(10*d) + (Sec[c]*Sec[c + d*x]^2*(3*A*Sin[c] + 10*A*Sin[d*x] + 5*B*Sin[d*x]))/(30*d) +
 (Sec[c]*Sec[c + d*x]*(10*A*Sin[c] + 5*B*Sin[c] + 24*A*Sin[d*x] + 30*B*Sin[d*x]))/(30*d)) - (A*(a + a*Cos[c +
d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x
- ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]
]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) - (2*B*(a + a*Cos[c + d*x])^2*Csc[c]*Hyperg
eometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqr
t[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x
 - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) + (2*A*(a + a*Cos[c + d*x])^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*((Hype
rgeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Co
s[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Ta
n[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x +
ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[
c]^2]]))/(5*d) + (B*(a + a*Cos[c + d*x])^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}
, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 +
 Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((
Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2
])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d)

________________________________________________________________________________________

Maple [B]  time = 10.34, size = 741, normalized size = 4.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^2*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x)

[Out]

-8*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(1/4*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1
/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(
1/2))+(1/4*A+1/2*B)*(-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+s
in(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)
^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)+(1/2*A+1/4*
B)*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+
1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)
^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))-1/20*A/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(
1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^
(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*Elliptic
E(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)
^2+24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*
EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(
1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B a^{2} \cos \left (d x + c\right )^{3} +{\left (A + 2 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} +{\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right ) + A a^{2}}{\cos \left (d x + c\right )^{\frac{7}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral((B*a^2*cos(d*x + c)^3 + (A + 2*B)*a^2*cos(d*x + c)^2 + (2*A + B)*a^2*cos(d*x + c) + A*a^2)/cos(d*x +
c)^(7/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c))/cos(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), x)